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A fiat membrane separates a half space filled with a moving compres- 
sible gas from a vacuum. The membrane is broken suddenly, and the 
resulting plane non-steady-state flow of the gas is investigated in the 
approximation of near-sonic flow. The flow pattern is constructed using 
exact particular solutions of the equations of non-steady-state near-sonic 
flOW [i, 2J. 

w 1. Let the plane y = 0 be the impenetrable barrier. A gas moves 
with some velocity u -< a.  along the x axis in the region y > 0. At 
time t = 0 the half-plane y = 0, x > 0 is suddenly removed. At this 
moment the region of uniform flow has a direct boundary with the 
vacuum, and the free surface coincides with the half-plane. Subse- 
quently rarefaction waves spread out from every point on the free sur- 
face, and a centered rarefaction wave arises in the neighborhood of 
the point 0. In this region the flow is governed by the equations of non- 
stationary near-sonic flow [2-4]  

OU / O~ - -  UOU / OX @ O F / O Y  = O, 

OV / OX 4- OU / OY = O 

-c = t / 2t., x = e X  / a.t . ,  y = aV~Y / a . t .  

u - -  a .  = eU / (• + i), v = 8"l~-V l (x + t ) .  (1.i) 

Here u, v are the components of the velocity vector, a.  is the 
critical velocity of sound, x is the adiabatic coefficient, t. is some 
characteristic time, ~ is a smali quantity. 

The last two equations impose limitations on flows which may be 
treated within the framework of the near-sonic approximation. For 
t = 0 these equations break down on the semi-axis x > 0 since near 
the point x = 0, y = 0 the stream flows around a finite comer, and the 
components u and v of the velocity vector change roles as it were: v 
becomes comparable with a. ,  and u becomes small. In the near-sonic 
approximation it is assumed that U = ~, V = ~ in such region of flow. 
k is impossible to Investigate the dynamics of the free surface in the 
near-sonic approximation for the problem as formulated here. This 
breakdown of the equations does not affect the stream because of the 
supersonic nature of the flow. The region of the stream perturbed by 
the effect of the free surface is separated from the region where the 
disturbance has not been reached by the envelope of the rarefaction 
waves having zero amplitude, which is the characteristic surface of 
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equations (i.1). The equation for the characteristic sttrfaces of the 

system (1.1) has the form 

O X / o ~  + v + ( o x  I 0 / )  2 = 0. (1.2) 

The required surface propagates with a motion which is uniform 
but varies in time u = u0(r )  or 

v = u0 (% v = go" (3) g. (l.a) 

At time t = 0 it shouId correspond with the half-line Y = 0, X > 0. 
Integrating (1.2) under these conditions we obtain the equation of this 
characteristic surface: 

2 [ =  ~-~-Y2-- i U ( t ) d r .  (1.4) 
o 

The flow in the region of the point O for t > 0 is Prandtl-Mayer 
flow, i . e . ,  from (1.1) fo rX-~  0, Y ~ 0 ,  

U = - -X  2 / y2, V = --2/3X3 / y a  (t.5) 

Thus the required solution of Eqs. (1.1) should pass to the flow(1.3) 
at the characteristic (t.4), and to the flow (1.5) in the neighborhood 
of the point O. 
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w 2. We shall construct the flow pattern in the disturbed region using 
the exact particular solutions found in papers [1,2]: 

U = % ( q ,  z)Y 2+q~o(q, % 

V = * s  (q, "~) ya  + r (q, *) Y ,  X = qy2 + X0 (q, 3). (2.1) 

Here ~z, r $3 are determined from the equations 

Te,q - -  T2qq (~2 + 4q e) - -  (P2q ((P~q - -  2q) - -  2T~ ~--- 0 

~Pl = (Poq (% + 4q z) --  (Poe, 

~3 = 1/8 [q)2q (~ 02 -~ 4q 2) - -  4q~ ~ qDe.], (2.2) 

and r • from the equations 

(Poq ~ - -  2qv, Xoq'= v 

Vq (% + 4q ~) + 8~v --  v~ = 0. (2.3) 

The flow pattern (2.1) should pass to that of (1.3) on the character- 
istie surface (1.4) where q = q0(~'). This requirement lends to the fol- 
lowing conditiom: 

q = q o ( T ) = t / 4 ~ ,  ~ (qo, "r) ~ O, ~3 (qo,'~) ~---0 

% (*, qo) = fro (*), go (*. qo) ------ .~ g (~) d~, 
o 

,1 (*, q o ) = -  go' (~). (2.4) 

Condition (1.4) will be satisfied at the point O if 

g~,.l q2 ~ - - l ,  % I  q3 ~ - -  ~/~, 

q~o ---, O, X0-+O as q-~ oo. (2 .5 )  
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Equation (2.2) has the particular solution 

% = - -  q~ q -  c (x)  (2.6) 

satisfying (2.5); c(r) is an arbitrary function. From the last two expres- 
sions of (2.4) we have 

c (x) = t/t6 @. 

Here 

1 2 1 + ~ _ _  
(P2 = - -  q~ -}- t6"d ' % =----~.-qa__ q ~ 24.r . (2.7) 

Taking (2.5) and (2.7) into account, Eqs. (2.3) assume the form 

q q 

oo co 

Vq (37"- + t I t6t  2) - -  v~ -~- 8qv = 0. (2.8) 

It follows from (2.4) that 

x14-, t xI~ i I qvdqm--"~-Uo(t), vdq=- -  Uo('~)d'r. (2.9) 
O0 r  0 

It may easily be shown that when one of these conditions if ful- 
filled, the other is also fulfilled identica21y. In fact, differentiating 
the second expression of (2.9), we obtMn 

13~ I \ I 'vq ~ q ~-i-~)dq-~- I 8q'vdq-- 
c o  o o  

1/4"c 

v ( q ~  I qvdq=--U~ 
co 

We note that the conditions imposed on ~l  are also fulfilled iden- 
tically in this case. The solution of Eq. (2.8) has the form 

i - -  4qz 
v = F ( n )  ( 1 / ~ -  3rl)%'~I', r l ' =  ~ i ~ t ~ - ~ "  (2.10) 

Therefore 

F O ] ) =  4""~ d'-~-~o(~ I _ x ) %  dz. (2.12) 

We have thus obtained an exact solution satisfying the boundary 

conditions (2.4) and (2.5). 
For U0(r ) = Ar a ,  (a --~ 0) Eq. (2.11) may easily be integrated. The 

solutions (2.1) assume a particularly simple form in the case U0(v ) = 
= U 0 = const. In this case F = 5 .3  2/3 U 0 and the solutions take the 
form 

16qZv ~ - -  I . Uo 20q'c --  t 
u=-l--TgTr--r~+ ~#~ (f2qt_ff/3 , 

U0T X = qye (oq~- %71= 

t 2 q~_ 1 \  
V = 2~x" 3 q g-if) y8 + 

(4r - -  1) q 
+ io ~ Go (~ -  ~ r .  (2.1s) 

The solution thus obtained enables us to examine how the process 
of reaching Prandtl-Meyer behaves in time, and also to examine how 
the rarefaction waves affect the initial flow. Figures 1 and 2 show the 
velocity fields for the two moments of time r = 0.1 and r = 1, U0 = 1. 
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Here FO1) is an arbitrary function which may be found from (2.9). 
Passing from q to ~/, we obtain 

'I~ l r~ 
S 
o 

F (n) ( % ' 1 ~  -- *1)-'/' dn = -~- go (t) t '/~ . (2.11) 16 June 1966 Novosibirsk 


